

Py Healthchecks.Io

[image: PyPI] [https://pypi.org/project/healthchecks-io/] [image: Status] [https://pypi.org/project/healthchecks-io/] [image: Python Version] [https://pypi.org/project/healthchecks-io] [image: License] [https://opensource.org/licenses/MIT]

[image: Read the documentation at https://py-healthchecksio.readthedocs.io/en/latest/] [image: Tests] [https://github.com/andrewthetechie/py-healthchecks.io/actions?workflow=Tests] [image: Codecov] [https://codecov.io/gh/andrewthetechie/py-healthchecks.io]

[image: pre-commit] [https://github.com/pre-commit/pre-commit] [image: Black] [https://github.com/psf/black]

A python client for healthchecks.io. Supports the management api and ping api.

Features

	Sync and Async clients based on HTTPX

	Supports the management api and the ping api

	Supports Healthchecks.io SAAS and self-hosted instances

Requirements

	httpx

	pytz

	pydantic

Installation

You can install Py Healthchecks.Io via pip [https://pip.pypa.io/] from PyPI [https://pypi.org/]:

$ pip install healthchecks-io

Usage

Please see the Usage for details.

Contributing

Contributions are very welcome.
To learn more, see the Contributor Guide.

License

Distributed under the terms of the MIT license [https://opensource.org/licenses/MIT],
Py Healthchecks.Io is free and open source software.

Issues

If you encounter any problems,
please file an issue [https://github.com/andrewthetechie/py-healthchecks.io/issues] along with a detailed description.

Credits

This project was generated from @cjolowicz [https://github.com/cjolowicz]’s Hypermodern Python Cookiecutter [https://github.com/cjolowicz/cookiecutter-hypermodern-python] template.

Usage

This package implements the Healthchecks.io Management and Ping APIs as documented here https://healthchecks.io/docs/api/.

Context Manager

Either the Client or AsyncClient can be used as a ContextManager (or Async Context Manager)

from healthchecks_io import Client, CheckCreate

with Client(api_key="myapikey") as client:
 check = client.create_check(CheckCreate(name="New Check", tags="tag1 tag2"))
print(check)

This is probably the easiest way to use the Clients for one-off scripts. If you do not need to keep a client open for multiple requests, just use
the context manager.

Note

When using either of the client types as a context manager, the httpx client underlying the client will be closed when the context manager exits.

Since we allow you to pass in a client on creation, its possible to use a shared client with this library. If you then use the client as a contextmanager,
it will close that shared client.

Just a thing to be aware of!

Sync

Instantiate a Client

If you want to work with the healthchecks.io API for the SaaS healthchecks, you
can create a client like below:

from healthchecks_io import Client

client = Client(api_key="myapikey", ping_key="optional_ping_key")

If you are using a self-hosted healthchecks instance, you can set the api url when creating the client.

from healthchecks_io import Client

client = Client(api_key="myapikey",
 api_url="https://myhealthchecksinstance.com/api/",
 ping_key="optional_ping_key")

Creating a new Check

from healthchecks_io import Client, CheckCreate

client = Client(api_key="myapikey")

check = client.create_check(CheckCreate(name="New Check", tags="tag1 tag2"))
print(check)

Getting a Check

from healthchecks_io import Client

client = Client(api_key="myapikey")

check = client.get_check(check_id="mychecksuuid")
print(check)

Pinging a Check

from healthchecks_io import Client

client = Client(api_key="myapikey")
result, text = client.success_ping(uuid="mychecksuuid")
print(text)

Async

If you want to use the client in an async program, use AsyncClient instead of Client

import asyncio
from healthchecks_io import AsyncClient, CheckCreate

async def main():
 client = AsyncClient(api_key="myapikey")

 check = await client.create_check(CheckCreate(name="New Check", tags="tag1 tag2"))
 print(check)

if __name__ == "__main__":
 asyncio.run(main())

CheckTrap

Ever wanted to run some code and wrape it in a healthcheck check without thinking about it?

That’s what CheckTrap is for.

import asyncio
from healthchecks_io import Client, AsyncClient, CheckCreate, CheckTrap

def run_my_thing_to_monitor():
 pass

async def main(check):
 client = AsyncClient(ping_key="ping_key")

 # works with async too, and the ping api and slugs
 async with CheckTrap(client, slug=check.slug) as ct:
 # when entering the context manager, sends a start ping to your check
 # Add custom logs to what gets sent to healthchecks. Reminder, only the first 10k bytes get saved
 ct.add_log("My custom log message")
 run_my_thing_to_monitor()

if __name__ == "__main__":
 client = Client(api_key="myapikey")

 # create a new check, or use an existing one already with just its uuid.
 check = await client.create_check(CreateCheck(name="New Check", tags="tag1 tag2")

 with CheckTrap(client, check.uuid):
 # when entering the context manager, sends a start ping to your check
 run_my_thing_to_monitor()

 asyncio.run(main())

Reference

py_healthchecks.io

Py Healthchecks.Io.

	
class healthchecks_io.AsyncClient(api_key='', ping_key='', api_url='https://healthchecks.io/api/', ping_url='https://hc-ping.com/', api_version=1, client=None)

	A Healthchecks.io client implemented using httpx’s Async methods.

	Parameters:

	
	api_key (str)

	ping_key (str)

	api_url (str)

	ping_url (str)

	api_version (int)

	client (AsyncClient | None)

	
async create_check(new_check)

	Creates a new check and returns it.

With this API call, you can create both Simple and Cron checks:
* To create a Simple check, specify the timeout parameter.
* To create a Cron check, specify the schedule and tz parameters.

	Parameters:

	new_check (CheckCreate) – New check you are wanting to create

	Returns:

	check that was just created

	Return type:

	Check

	
async delete_check(check_id)

	Permanently deletes the check from the user’s account.

check_id must be a uuid, not a unique id

	Parameters:

	check_id (str) – check’s uuid

	Returns:

	the check just deleted

	Return type:

	Check

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	CheckNotFoundError – Raised when status_code is 404

	HCAPIRateLimitError – Raised when status code is 429

	
async exit_code_ping(exit_code, uuid='', slug='', data='')

	Signals to Healthchecks.io that the job has failed.

Actively signaling a failure minimizes the delay from your monitored service failing to you receiving an alert.

Can take a uuid or a slug. If you call with a slug, you much have a
ping key set.

Check’s slug is not guaranteed to be unique. If multiple checks in the
project have the same name, they also have the same slug. If you make
a Pinging API request using a non-unique slug, Healthchecks.io will
return the “409 Conflict” HTTP status code and ignore the request.

	Parameters:

	
	exit_code (int) – Exit code to sent, int from 0 to 255

	uuid (str) – Check’s UUID. Defaults to “”.

	slug (str) – Check’s Slug. Defaults to “”.

	data (str) – Text data to append to this check. Defaults to “”.

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	CheckNotFoundError – Raised when status_code is 404 or response text has “not found” in it

	BadAPIRequestError – Raised when status_code is 400, or if you pass a uuid and a slug, or if
 pinging by a slug and do not have a ping key set

	HCAPIRateLimitError – Raised when status code is 429 or response text has “rate limited” in it

	NonUniqueSlugError – Raused when status code is 409.

	Returns:

	success (true or false) and the response text

	Return type:

	Tuple[bool, str]

	
async fail_ping(uuid='', slug='', data='')

	Signals to Healthchecks.io that the job has failed.

Actively signaling a failure minimizes the delay from your monitored service failing to you receiving an alert.

Can take a uuid or a slug. If you call with a slug, you much have a
ping key set.

Check’s slug is not guaranteed to be unique. If multiple checks in the
project have the same name, they also have the same slug. If you make
a Pinging API request using a non-unique slug, Healthchecks.io will
return the “409 Conflict” HTTP status code and ignore the request.

	Parameters:

	
	uuid (str) – Check’s UUID. Defaults to “”.

	slug (str) – Check’s Slug. Defaults to “”.

	data (str) – Text data to append to this check. Defaults to “”.

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	CheckNotFoundError – Raised when status_code is 404 or response text has “not found” in it

	BadAPIRequestError – Raised when status_code is 400, or if you pass a uuid and a slug, or if
 pinging by a slug and do not have a ping key set

	HCAPIRateLimitError – Raised when status code is 429 or response text has “rate limited” in it

	NonUniqueSlugError – Raused when status code is 409.

	Returns:

	success (true or false) and the response text

	Return type:

	Tuple[bool, str]

	
async get_badges()

	Returns a dict of all tags in the project, with badge URLs for each tag.

Healthchecks.io provides badges in a few different formats:
svg: returns the badge as a SVG document.
json: returns a JSON document which you can use to generate a custom badge yourself.
shields: returns JSON in a Shields.io compatible format.
In addition, badges have 2-state and 3-state variations:

svg, json, shields: reports two states: “up” and “down”. It considers any checks in the grace period
as still “up”.
svg3, json3, shields3: reports three states: “up”, “late”, and “down”.

The response includes a special * entry: this pseudo-tag reports the overal status
of all checks in the project.

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	HCAPIRateLimitError – Raised when status code is 429

	Returns:

	Dictionary of all tags in the project with badges

	Return type:

	Dict[str, Badges]

	
async get_check(check_id)

	Get a single check by id.

check_id can either be a check uuid if using a read/write api key
or a unique key if using a read only api key.

	Parameters:

	check_id (str) – check’s uuid or unique id

	Returns:

	the check

	Return type:

	Check

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	CheckNotFoundError – Raised when status_code is 404

	HCAPIRateLimitError – Raised when status code is 429

	
async get_check_flips(check_id, seconds=None, start=None, end=None)

	Returns a list of “flips” this check has experienced.

A flip is a change of status (from “down” to “up,” or from “up” to “down”).

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	CheckNotFoundError – Raised when status_code is 404

	BadAPIRequestError – Raised when status_code is 400

	HCAPIRateLimitError – Raised when status code is 429

	Parameters:

	
	check_id (str) – check uuid

	seconds (Optional[int], optional) – Returns the flips from the last value seconds. Defaults to None.

	start (Optional[int], optional) – Returns flips that are newer than the specified UNIX timestamp.
Defaults to None.

	end (Optional[int], optional) – Returns flips that are older than the specified UNIX timestamp.
Defaults to None.

	Returns:

	List of status flips for this check

	Return type:

	List[CheckStatuses]

	
async get_check_pings(check_id)

	Returns a list of pings this check has received.

This endpoint returns pings in reverse order (most recent first),
and the total number of returned pings depends on the account’s
billing plan: 100 for free accounts, 1000 for paid accounts.

	Parameters:

	check_id (str) – check’s uuid

	Returns:

	list of pings this check has received

	Return type:

	List[CheckPings]

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	CheckNotFoundError – Raised when status_code is 404

	HCAPIRateLimitError – Raised when status code is 429

	
async get_checks(tags=None)

	Get a list of checks from the healthchecks api.

	Parameters:

	tags (Optional[List[str]], optional) – Filters the checks and returns only
the checks that are tagged with the specified value. Defaults to None.

	Raises:

	
	HCAPIAuthError – When the API returns a 401, indicates an api key issue

	HCAPIError – When the API returns anything other than a 200 or 401

	HCAPIRateLimitError – Raised when status code is 429

	Returns:

	[description]

	Return type:

	List[Check]

	
async get_integrations()

	Returns a list of integrations belonging to the project.

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	HCAPIRateLimitError – Raised when status code is 429

	Returns:

	List of integrations for the project

	Return type:

	List[Optional[Integration]]

	
async pause_check(check_id)

	Disables monitoring for a check without removing it.

The check goes into a “paused” state.
You can resume monitoring of the check by pinging it.

check_id must be a uuid, not a unique id

	Parameters:

	check_id (str) – check’s uuid

	Returns:

	the check just paused

	Return type:

	Check

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	CheckNotFoundError – Raised when status_code is 404

	
async start_ping(uuid='', slug='', data='')

	Sends a “job has started!” message to Healthchecks.io.

Sending a “start” signal is optional, but it enables a few extra features:
* Healthchecks.io will measure and display job execution times
* Healthchecks.io will detect if the job runs longer than its configured grace time

Can take a uuid or a slug. If you call with a slug, you much have a
ping key set.

Check’s slug is not guaranteed to be unique. If multiple checks in the
project have the same name, they also have the same slug. If you make
a Pinging API request using a non-unique slug, Healthchecks.io will
return the “409 Conflict” HTTP status code and ignore the request.

	Parameters:

	
	uuid (str) – Check’s UUID. Defaults to “”.

	slug (str) – Check’s Slug. Defaults to “”.

	data (str) – Text data to append to this check. Defaults to “”.

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	CheckNotFoundError – Raised when status_code is 404 or response text has “not found” in it

	BadAPIRequestError – Raised when status_code is 400, or if you pass a uuid and a slug, or if
 pinging by a slug and do not have a ping key set

	HCAPIRateLimitError – Raised when status code is 429 or response text has “rate limited” in it

	NonUniqueSlugError – Raused when status code is 409.

	Returns:

	success (true or false) and the response text

	Return type:

	Tuple[bool, str]

	
async success_ping(uuid='', slug='', data='')

	Signals to Healthchecks.io that a job has completed successfully.

Can also be used to indicate a continuously running process is still running and healthy.

Can take a uuid or a slug. If you call with a slug, you much have a
ping key set.

Check’s slug is not guaranteed to be unique. If multiple checks in the
project have the same name, they also have the same slug. If you make
a Pinging API request using a non-unique slug, Healthchecks.io will
return the “409 Conflict” HTTP status code and ignore the request.

	Parameters:

	
	uuid (str) – Check’s UUID. Defaults to “”.

	slug (str) – Check’s Slug. Defaults to “”.

	data (str) – Text data to append to this check. Defaults to “”.

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	CheckNotFoundError – Raised when status_code is 404 or response text has “not found” in it

	BadAPIRequestError – Raised when status_code is 400, or if you pass a uuid and a slug, or if
 pinging by a slug and do not have a ping key set

	HCAPIRateLimitError – Raised when status code is 429 or response text has “rate limited” in it

	NonUniqueSlugError – Raused when status code is 409.

	Returns:

	success (true or false) and the response text

	Return type:

	Tuple[bool, str]

	
async update_check(uuid, update_check)

	Updates an existing check.

If you omit any parameter in update_check, Healthchecks.io will leave
its value unchanged.

	Parameters:

	
	uuid (str) – UUID for the check to update

	update_check (CheckCreate) – Check values you want to update

	Returns:

	check that was just updated

	Return type:

	Check

	
exception healthchecks_io.BadAPIRequestError

	Thrown when an api request returns a 400.

	
class healthchecks_io.Badges(*, svg, svg3, json_url, json3_url, shields, shields3)

	Object with the Badges urls.

	Parameters:

	
	svg (str)

	svg3 (str)

	json_url (str)

	json3_url (str)

	shields (str)

	shields3 (str)

	
classmethod from_api_result(badges_dict)

	Converts a dictionary from the healthchecks api into a Badges object.

	Parameters:

	badges_dict (Dict[str, str])

	Return type:

	Badges

	
class healthchecks_io.Check(*, unique_key=None, name, slug, tags=None, desc=None, grace, n_pings, status, last_ping=None, next_ping=None, manual_resume, methods=None, ping_url=None, update_url=None, pause_url=None, channels=None, timeout=None, uuid=None)

	Schema for a check object, either from a readonly api request or a rw api request.

	Parameters:

	
	unique_key (str | None)

	name (str)

	slug (str)

	tags (str | None)

	desc (str | None)

	grace (int)

	n_pings (int)

	status (str)

	last_ping (datetime | None)

	next_ping (datetime | None)

	manual_resume (bool)

	methods (str | None)

	ping_url (str | None)

	update_url (str | None)

	pause_url (str | None)

	channels (str | None)

	timeout (int | None)

	uuid (str | None)

	
classmethod from_api_result(check_dict)

	Converts a dictionary from the healthchecks api into an Check object.

	Parameters:

	check_dict (Dict[str, Any])

	Return type:

	Check

	
classmethod validate_uuid(value, values)

	Tries to set the uuid from the ping_url.

Will return none if a read only token is used because it cannot retrieve the UUID of a check

	Parameters:

	
	value (str | None)

	values (Dict[str, Any])

	Return type:

	str | None

	
class healthchecks_io.CheckCreate(*, name='', tags='', desc='', timeout=86400, grace=3600, schedule=None, tz='UTC', manual_resume=False, methods='', channels=None, unique=[])

	Pydantic object for creating a check.

	Parameters:

	
	name (str | None)

	tags (str | None)

	desc (str | None)

	timeout (int | None)

	grace (int | None)

	schedule (str | None)

	tz (str | None)

	manual_resume (bool | None)

	methods (str | None)

	channels (str | None)

	unique (List[str | None] | None)

	
classmethod validate_methods(value)

	Validate that methods.

	Parameters:

	value (str)

	Return type:

	str

	
classmethod validate_schedule(value)

	Validates that the schedule is a valid cron expression.

	Parameters:

	value (str)

	Return type:

	str

	
classmethod validate_tz(value)

	Validates that the timezone is a valid timezone string.

	Parameters:

	value (str)

	Return type:

	str

	
classmethod validate_unique(value)

	Validate unique list.

	Parameters:

	value (List[str | None])

	Return type:

	List[str | None]

	
exception healthchecks_io.CheckNotFoundError

	Thrown when getting a check returns a 404.

	
class healthchecks_io.CheckPings(*, type, date, number_of_pings, scheme, remote_addr, method, user_agent, duration=None)

	A Pydantic schema for a check’s Pings.

	Parameters:

	
	type (str)

	date (datetime)

	number_of_pings (int)

	scheme (str)

	remote_addr (str)

	method (str)

	user_agent (str)

	duration (float | None)

	
classmethod from_api_result(ping_dict)

	Converts a dictionary from the healthchecks api into a CheckPings object.

	Parameters:

	ping_dict (Dict[str, str | int | datetime])

	Return type:

	CheckPings

	
class healthchecks_io.CheckStatuses(*, timestamp, up)

	A Pydantic schema for a check’s Statuses.

	Parameters:

	
	timestamp (datetime)

	up (int)

	
class healthchecks_io.CheckTrap(client, uuid='', slug='', suppress_exceptions=False)

	CheckTrap is a context manager to wrap around python code to communicate results to a Healthchecks check.

	Parameters:

	
	client (Client | AsyncClient)

	uuid (str)

	slug (str)

	suppress_exceptions (bool)

	
add_log(line)

	Add a line to the context manager’s log that is sent with the check.

	Parameters:

	line (str) – String to add to the logs

	Return type:

	None

	
class healthchecks_io.CheckUpdate(*, name=None, tags=None, desc='', timeout=None, grace=None, schedule=None, tz=None, manual_resume=None, methods=None, channels=None, unique=None)

	Pydantic object for updating a check.

	Parameters:

	
	name (str | None)

	tags (str | None)

	desc (str | None)

	timeout (int | None)

	grace (int | None)

	schedule (str | None)

	tz (str | None)

	manual_resume (bool | None)

	methods (str | None)

	channels (str | None)

	unique (List[str | None] | None)

	
class healthchecks_io.Client(api_key='', ping_key='', api_url='https://healthchecks.io/api/', ping_url='https://hc-ping.com/', api_version=1, client=None)

	A Healthchecks.io client implemented using httpx’s sync methods.

	Parameters:

	
	api_key (str)

	ping_key (str)

	api_url (str)

	ping_url (str)

	api_version (int)

	client (Client | None)

	
create_check(new_check)

	Creates a new check and returns it.

With this API call, you can create both Simple and Cron checks:
* To create a Simple check, specify the timeout parameter.
* To create a Cron check, specify the schedule and tz parameters.

	Parameters:

	new_check (CheckCreate) – New check you are wanting to create

	Returns:

	check that was just created

	Return type:

	Check

	
delete_check(check_id)

	Permanently deletes the check from the user’s account.

check_id must be a uuid, not a unique id

	Parameters:

	check_id (str) – check’s uuid

	Returns:

	the check just deleted

	Return type:

	checks.Check

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	CheckNotFoundError – Raised when status_code is 404

	
exit_code_ping(exit_code, uuid='', slug='', data='')

	Signals to Healthchecks.io that the job has failed.

Actively signaling a failure minimizes the delay from your monitored service failing to you receiving an alert.

Can take a uuid or a slug. If you call with a slug, you much have a
ping key set.

Check’s slug is not guaranteed to be unique. If multiple checks in the
project have the same name, they also have the same slug. If you make
a Pinging API request using a non-unique slug, Healthchecks.io will
return the “409 Conflict” HTTP status code and ignore the request.

	Parameters:

	
	exit_code (int) – Exit code to sent, int from 0 to 255

	uuid (str) – Check’s UUID. Defaults to “”.

	slug (str) – Check’s Slug. Defaults to “”.

	data (str) – Text data to append to this check. Defaults to “”

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	CheckNotFoundError – Raised when status_code is 404 or response text has “not found” in it

	BadAPIRequestError – Raised when status_code is 400, or if you pass a uuid and a slug, or if
 pinging by a slug and do not have a ping key set

	HCAPIRateLimitError – Raised when status code is 429 or response text has “rate limited” in it

	NonUniqueSlugError – Raused when status code is 409.

	Returns:

	success (true or false) and the response text

	Return type:

	Tuple[bool, str]

	
fail_ping(uuid='', slug='', data='')

	Signals to Healthchecks.io that the job has failed.

Actively signaling a failure minimizes the delay from your monitored service failing to you receiving an alert.

Can take a uuid or a slug. If you call with a slug, you much have a
ping key set.

Check’s slug is not guaranteed to be unique. If multiple checks in the
project have the same name, they also have the same slug. If you make
a Pinging API request using a non-unique slug, Healthchecks.io will
return the “409 Conflict” HTTP status code and ignore the request.

	Parameters:

	
	uuid (str) – Check’s UUID. Defaults to “”.

	slug (str) – Check’s Slug. Defaults to “”.

	data (str) – Text data to append to this check. Defaults to “”

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	CheckNotFoundError – Raised when status_code is 404 or response text has “not found” in it

	BadAPIRequestError – Raised when status_code is 400, or if you pass a uuid and a slug, or if
 pinging by a slug and do not have a ping key set

	HCAPIRateLimitError – Raised when status code is 429 or response text has “rate limited” in it

	NonUniqueSlugError – Raused when status code is 409.

	Returns:

	success (true or false) and the response text

	Return type:

	Tuple[bool, str]

	
get_badges()

	Returns a dict of all tags in the project, with badge URLs for each tag.

Healthchecks.io provides badges in a few different formats:
svg: returns the badge as a SVG document.
json: returns a JSON document which you can use to generate a custom badge yourself.
shields: returns JSON in a Shields.io compatible format.
In addition, badges have 2-state and 3-state variations:

	svg, json, shields: reports two states: “up” and “down”. It considers any checks in the grace period
	as still “up”.

svg3, json3, shields3: reports three states: “up”, “late”, and “down”.

The response includes a special * entry: this pseudo-tag reports the overal status
of all checks in the project.

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	Returns:

	Dictionary of all tags in the project with badges

	Return type:

	Dict[str, badges.Badges]

	
get_check(check_id)

	Get a single check by id.

check_id can either be a check uuid if using a read/write api key
or a unique key if using a read only api key.

	Parameters:

	check_id (str) – check’s uuid or unique id

	Returns:

	the check

	Return type:

	checks.Check

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	CheckNotFoundError – Raised when status_code is 404

	
get_check_flips(check_id, seconds=None, start=None, end=None)

	Returns a list of “flips” this check has experienced.

A flip is a change of status (from “down” to “up,” or from “up” to “down”).

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	CheckNotFoundError – Raised when status_code is 404

	BadAPIRequestError – Raised when status_code is 400

	Parameters:

	
	check_id (str) – check uuid

	seconds (Optional[int], optional) – Returns the flips from the last value seconds. Defaults to None.

	start (Optional[int], optional) – Returns flips that are newer than the specified UNIX timestamp.
Defaults to None.

	end (Optional[int], optional) – Returns flips that are older than the specified UNIX timestamp.
Defaults to None.

	Returns:

	List of status flips for this check

	Return type:

	List[checks.CheckStatuses]

	
get_check_pings(check_id)

	Returns a list of pings this check has received.

This endpoint returns pings in reverse order (most recent first),
and the total number of returned pings depends on the account’s
billing plan: 100 for free accounts, 1000 for paid accounts.

	Parameters:

	check_id (str) – check’s uuid

	Returns:

	list of pings this check has received

	Return type:

	List[checks.CheckPings]

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	CheckNotFoundError – Raised when status_code is 404

	
get_checks(tags=None)

	Get a list of checks from the healthchecks api.

	Parameters:

	tags (Optional[List[str]], optional) – Filters the checks and returns only
the checks that are tagged with the specified value. Defaults to None.

	Raises:

	
	HCAPIAuthError – When the API returns a 401, indicates an api key issue

	HCAPIError – When the API returns anything other than a 200 or 401

	Returns:

	[description]

	Return type:

	List[checks.Check]

	
get_integrations()

	Returns a list of integrations belonging to the project.

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	Returns:

	List of integrations for the project

	Return type:

	List[Optional[integrations.Integration]]

	
pause_check(check_id)

	Disables monitoring for a check without removing it.

The check goes into a “paused” state.
You can resume monitoring of the check by pinging it.

check_id must be a uuid, not a unique id

	Parameters:

	check_id (str) – check’s uuid

	Returns:

	the check just paused

	Return type:

	checks.Check

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	CheckNotFoundError – Raised when status_code is 404

	
start_ping(uuid='', slug='', data='')

	Sends a “job has started!” message to Healthchecks.io.

Sending a “start” signal is optional, but it enables a few extra features:
* Healthchecks.io will measure and display job execution times
* Healthchecks.io will detect if the job runs longer than its configured grace time

Can take a uuid or a slug. If you call with a slug, you much have a
ping key set.

Check’s slug is not guaranteed to be unique. If multiple checks in the
project have the same name, they also have the same slug. If you make
a Pinging API request using a non-unique slug, Healthchecks.io will
return the “409 Conflict” HTTP status code and ignore the request.

	Parameters:

	
	uuid (str) – Check’s UUID. Defaults to “”.

	slug (str) – Check’s Slug. Defaults to “”.

	data (str) – Text data to append to this check. Defaults to “”

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	CheckNotFoundError – Raised when status_code is 404 or response text has “not found” in it

	BadAPIRequestError – Raised when status_code is 400, or if you pass a uuid and a slug, or if
 pinging by a slug and do not have a ping key set

	HCAPIRateLimitError – Raised when status code is 429 or response text has “rate limited” in it

	NonUniqueSlugError – Raused when status code is 409.

	Returns:

	success (true or false) and the response text

	Return type:

	Tuple[bool, str]

	
success_ping(uuid='', slug='', data='')

	Signals to Healthchecks.io that a job has completed successfully.

Can also be used to indicate a continuously running process is still running and healthy.

Can take a uuid or a slug. If you call with a slug, you much have a
ping key set.

Check’s slug is not guaranteed to be unique. If multiple checks in the
project have the same name, they also have the same slug. If you make
a Pinging API request using a non-unique slug, Healthchecks.io will
return the “409 Conflict” HTTP status code and ignore the request.

	Parameters:

	
	uuid (str) – Check’s UUID. Defaults to “”.

	slug (str) – Check’s Slug. Defaults to “”.

	data (str) – Text data to append to this check. Defaults to “”

	Raises:

	
	HCAPIAuthError – Raised when status_code == 401 or 403

	HCAPIError – Raised when status_code is 5xx

	CheckNotFoundError – Raised when status_code is 404 or response text has “not found” in it

	BadAPIRequestError – Raised when status_code is 400, or if you pass a uuid and a slug, or if
 pinging by a slug and do not have a ping key set

	HCAPIRateLimitError – Raised when status code is 429 or response text has “rate limited” in it

	NonUniqueSlugError – Raused when status code is 409.

	Returns:

	success (true or false) and the response text

	Return type:

	Tuple[bool, str]

	
update_check(uuid, update_check)

	Updates an existing check.

If you omit any parameter in update_check, Healthchecks.io will leave
its value unchanged.

With this API call, you can create both Simple and Cron checks:
* To create a Simple check, specify the timeout parameter.
* To create a Cron check, specify the schedule and tz parameters.

	Parameters:

	
	uuid (str) – UUID for the check to update

	update_check (CheckCreate) – Check values you want to update

	Returns:

	check that was just updated

	Return type:

	Check

	
exception healthchecks_io.HCAPIAuthError

	Thrown when we fail to auth to the Healthchecks api.

	
exception healthchecks_io.HCAPIError

	API Exception for when we have an error with the healthchecks api.

	
exception healthchecks_io.HCAPIRateLimitError

	Thrown when the api returns a rate limit response.

	
class healthchecks_io.Integration(*, id, name, kind)

	Schema for an integration object.

	Parameters:

	
	id (str)

	name (str)

	kind (str)

	
classmethod from_api_result(integration_dict)

	Converts a dictionary from the healthchecks api into an Integration object.

	Parameters:

	integration_dict (Dict[str, str])

	Return type:

	Integration

	
exception healthchecks_io.NonUniqueSlugError

	Thrown when the api returns a 409 when pinging.

	
exception healthchecks_io.PingFailedError

	Thrown when a ping fails.

	
exception healthchecks_io.WrongClientError

	Thrown when trying to use a CheckTrap with the wrong client type.

Contributor Guide

Thank you for your interest in improving this project.
This project is open-source under the MIT license [https://opensource.org/licenses/MIT] and
welcomes contributions in the form of bug reports, feature requests, and pull requests.

Here is a list of important resources for contributors:

	Source Code [https://github.com/andrewthetechie/py-healthchecks.io]

	Documentation [https://py-healthchecks.io.readthedocs.io/]

	Issue Tracker [https://github.com/andrewthetechie/py-healthchecks.io/issues]

	Code of Conduct

How to report a bug

Report bugs on the Issue Tracker [https://github.com/andrewthetechie/py-healthchecks.io/issues].

When filing an issue, make sure to answer these questions:

	Which operating system and Python version are you using?

	Which version of this project are you using?

	What did you do?

	What did you expect to see?

	What did you see instead?

The best way to get your bug fixed is to provide a test case,
and/or steps to reproduce the issue.

How to request a feature

Request features on the Issue Tracker [https://github.com/andrewthetechie/py-healthchecks.io/issues].

How to set up your development environment

You need Python 3.7+ and the following tools:

	Poetry [https://python-poetry.org/]

	Nox [https://nox.thea.codes/]

	nox-poetry [https://nox-poetry.readthedocs.io/]

Install the package with development requirements:

$ poetry install

You can now run an interactive Python session,
or the command-line interface:

$ poetry run python
$ poetry run py-healthchecks.io

How to test the project

Run the full test suite:

$ nox

List the available Nox sessions:

$ nox --list-sessions

You can also run a specific Nox session.
For example, invoke the unit test suite like this:

$ nox --session=tests

Unit tests are located in the tests directory,
and are written using the pytest [https://pytest.readthedocs.io/] testing framework.

How to submit changes

Open a pull request [https://github.com/andrewthetechie/py-healthchecks.io/pulls] to submit changes to this project.

Your pull request needs to meet the following guidelines for acceptance:

	The Nox test suite must pass without errors and warnings.

	Include unit tests. This project maintains 100% code coverage.

	If your changes add functionality, update the documentation accordingly.

Feel free to submit early, though—we can always iterate on this.

To run linting and code formatting checks before committing your change, you can install pre-commit as a Git hook by running the following command:

$ nox --session=pre-commit -- install

It is recommended to open an issue before starting work on anything.
This will allow a chance to talk it over with the owners and validate your approach.

Contributor Covenant Code of Conduct

Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

Our Standards

Examples of behavior that contributes to a positive environment for our community include:

	Demonstrating empathy and kindness toward other people

	Being respectful of differing opinions, viewpoints, and experiences

	Giving and gracefully accepting constructive feedback

	Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience

	Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

	The use of sexualized language or imagery, and sexual attention or
advances of any kind

	Trolling, insulting or derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or email
address, without their explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate.

Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at andrew@💻.kz. All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 2.0,
available at https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder [https://github.com/mozilla/diversity].

For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/translations.

MIT License

Copyright © 2021 Andrew Herrington

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

The software is provided “as is”, without warranty of any kind, express or
implied, including but not limited to the warranties of merchantability,
fitness for a particular purpose and noninfringement. In no event shall the
authors or copyright holders be liable for any claim, damages or other
liability, whether in an action of contract, tort or otherwise, arising from,
out of or in connection with the software or the use or other dealings in the
software.

 Python Module Index

 h

 		 	

 		
 h	

 	
 	
 healthchecks_io	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | P
 | S
 | U
 | V
 | W

A

 	
 	add_log() (healthchecks_io.CheckTrap method)

 	
 	AsyncClient (class in healthchecks_io)

B

 	
 	BadAPIRequestError

 	
 	Badges (class in healthchecks_io)

C

 	
 	Check (class in healthchecks_io)

 	CheckCreate (class in healthchecks_io)

 	CheckNotFoundError

 	CheckPings (class in healthchecks_io)

 	CheckStatuses (class in healthchecks_io)

 	
 	CheckTrap (class in healthchecks_io)

 	CheckUpdate (class in healthchecks_io)

 	Client (class in healthchecks_io)

 	create_check() (healthchecks_io.AsyncClient method)

 	(healthchecks_io.Client method)

D

 	
 	delete_check() (healthchecks_io.AsyncClient method)

 	(healthchecks_io.Client method)

E

 	
 	exit_code_ping() (healthchecks_io.AsyncClient method)

 	(healthchecks_io.Client method)

F

 	
 	fail_ping() (healthchecks_io.AsyncClient method)

 	(healthchecks_io.Client method)

 	from_api_result() (healthchecks_io.Badges class method)

 	(healthchecks_io.Check class method)

 	(healthchecks_io.CheckPings class method)

 	(healthchecks_io.Integration class method)

G

 	
 	get_badges() (healthchecks_io.AsyncClient method)

 	(healthchecks_io.Client method)

 	get_check() (healthchecks_io.AsyncClient method)

 	(healthchecks_io.Client method)

 	get_check_flips() (healthchecks_io.AsyncClient method)

 	(healthchecks_io.Client method)

 	
 	get_check_pings() (healthchecks_io.AsyncClient method)

 	(healthchecks_io.Client method)

 	get_checks() (healthchecks_io.AsyncClient method)

 	(healthchecks_io.Client method)

 	get_integrations() (healthchecks_io.AsyncClient method)

 	(healthchecks_io.Client method)

H

 	
 	HCAPIAuthError

 	HCAPIError

 	
 	HCAPIRateLimitError

 	
 healthchecks_io

 	module

I

 	
 	Integration (class in healthchecks_io)

M

 	
 	
 module

 	healthchecks_io

N

 	
 	NonUniqueSlugError

P

 	
 	pause_check() (healthchecks_io.AsyncClient method)

 	(healthchecks_io.Client method)

 	
 	PingFailedError

S

 	
 	start_ping() (healthchecks_io.AsyncClient method)

 	(healthchecks_io.Client method)

 	
 	success_ping() (healthchecks_io.AsyncClient method)

 	(healthchecks_io.Client method)

U

 	
 	update_check() (healthchecks_io.AsyncClient method)

 	(healthchecks_io.Client method)

V

 	
 	validate_methods() (healthchecks_io.CheckCreate class method)

 	validate_schedule() (healthchecks_io.CheckCreate class method)

 	
 	validate_tz() (healthchecks_io.CheckCreate class method)

 	validate_unique() (healthchecks_io.CheckCreate class method)

 	validate_uuid() (healthchecks_io.Check class method)

W

 	
 	WrongClientError

 _static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Py Healthchecks.Io

_static/plus.png

